
Here is an algorithm for finding a path from the
entrance to the exit of such a maze. This
algorithm, like many others, is based on the idea
of a worklist that holds individual steps towards
the solution. For our problem the worklist holds
squares of the maze that we know how to reach
from the entrance.

We'll actually code two solutions -- one where the
worklist is a stack and one were it is a queue. But
the algorithm is the same regardless of the
structure used for the worklist.

We will start the worklist with the entrance square
for the maze as its only element.

We will also use a marking system, marking squares
that we have already reached. Each time we take
the next element from the worklist, we look to see
if it is the maze's exit; if so we are done. If it is not
the exit we add all of its unmarked open neighbors
(i.e. white squares) to the worklist, marking them
as we do so.

You should see that this process will eventually
mark every square that can be reached from the
start square.

This ends in one of two ways -- either we reach the
maze's exit, in which case we have solved the maze,
or else we reach a stage where there is nothing left
in the worklist, in which case the maze has no
solution.

We will also be adding previous edges from nodes
in the worklist back to the nodes that put them
there. Eventually these previous edges will form
a path from the goal back to the entrance. When
we reverse it this path will be our solution to the
maze.

0 1 2 3 4 5 6

0

1

2

3

4

5

Here is what those previous edges look like: edges
from each square back to the square that caused it
to be added to the worklist:

0 1 2 3 4 5 6

0

1

2

3

4

5

Now start at the exit square and follow the path
edges back to the start square:

That gives us a path from the exit to the start; if
we reverse it we have a path from the start to the
exit: a solution to the maze.

Here is the full algorithm:
• Start the worklist with the entrance square
• At each step:

• If the worklist is empty there is no solution
• If the worklist isn't empty take node p from it.
• If p is the exit square stop; you have solved

the maze.
• Otherwise let L be the list of p's neighbors.
• For each q in L if q is unmarked and not a wall

then mark q and add q to the worklist with a
previous edge from q back to p.

For example, consider the following maze, where
E indicates the entrance and G (for Goal) indicates
the exit:

0 1 2 3 4

0 E

1

2

3 G

We will add neighbors to the worklist in the order
North, East, South West. We will color the
current node Blue, marked nodes Yellow.

0 1 2 3 4

0 E

1

2

3 G

First, let's use a queue for the worklist. We start

Current node: (0, 2)
Worklist: empty
Unmarked neighbors of the current node:

(1, 2)
Worklist after unmarked neighbors are added:

(1, 2)

0 1 2 3 4

0 E

1

2

3 G

Current node: (1, 2)
Worklist: empty
Unmarked neighbors of the current node:

(1, 3), (2,2), (1,1)
Worklist after unmarked neighbors are added:

(1,3), (2,2), (1,1)

The worklist as a queue:

0 1 2 3 4

0 E

1

2

3 G

Current node: (1, 3)
Worklist: (2,2), (1,1)
Unmarked neighbors of the current node:

(1, 4)
Worklist after unmarked neighbors are added:

(2,2), (1,1), (1,4)

The worklist as a queue:

0 1 2 3 4

0 E

1

2

3 G

Current node: (2, 2)
Worklist: (1,1), (1,4)
Unmarked neighbors of the current node:

(3, 2), (2, 1)
Worklist after unmarked neighbors are added:

(1,1), (1,4), (3, 2), (2, 1)

The worklist as a queue:

0 1 2 3 4

0 E

1

2

3 G

Current node: (1, 1)
Worklist: (1,4), (3, 2), (2, 1)
Unmarked neighbors of the current node:

(1, 0)
Worklist after unmarked neighbors are added:

(1,4), (3, 2), (2, 1), (1, 0)

The worklist as a queue:

0 1 2 3 4

0 E

1

2

3 G

Current node: (1, 4)
Worklist: (3, 2), (2, 1), (1, 0)
Unmarked neighbors of the current node:

(0, 4), (2, 4)
Worklist after unmarked neighbors are added:

(3, 2), (2, 1), (1, 0), (0, 4), (2, 4)

The worklist as a queue:

0 1 2 3 4

0 E

1

2

3 G

Current node: (3, 2)
Worklist: (2, 1), (1, 0), (0, 4), (2, 4)
Unmarked neighbors of the current node:

(3, 1)
Worklist after unmarked neighbors are added:

(2, 1), (1, 0), (0, 4), (2, 4), (3, 1)

The worklist as a queue:

0 1 2 3 4

0 E

1

2

3 G

Current node: (2, 1)
Worklist: (1, 0), (0, 4), (2, 4), (3, 1)
Unmarked neighbors of the current node:

none
Worklist after unmarked neighbors are added:

(1, 0), (0, 4), (2, 4), (3, 1)

The worklist as a queue:

0 1 2 3 4

0 E

1

2

3 G

Current node: (1, 0)
Worklist: (0, 4), (2, 4), (3, 1)
Unmarked neighbors of the current node:

(0, 0)
Worklist after unmarked neighbors are added:

(0, 4), (2, 4), (3, 1), (0, 0)

The worklist as a queue:

0 1 2 3 4

0 E

1

2

3 G

Current node: (0, 4)
Worklist: (2, 4), (3, 1), (0, 0)
Unmarked neighbors of the current node:

none
Worklist after unmarked neighbors are added:

(2, 4), (3, 1), (0, 0)

The worklist as a queue:

0 1 2 3 4

0 E

1

2

3 G

Current node: (2, 4)
Worklist: (3, 1), (0, 0)
Unmarked neighbors of the current node:

(3, 4)
Worklist after unmarked neighbors are added:

(3, 1), (0, 0), (3, 4)

The worklist as a queue:

0 1 2 3 4

0 E

1

2

3 G

Current node: (3, 1)
Worklist: (0, 0), (3, 4)
Unmarked neighbors of the current node:

none
Worklist after unmarked neighbors are added:

(0, 0), (3, 4)

The worklist as a queue:

0 1 2 3 4

0 E

1

2

3 G

Current node: (0, 0)
Worklist: (3, 4)
Unmarked neighbors of the current node:

none
Worklist after unmarked neighbors are added:

(3, 4)

The worklist as a queue:

0 1 2 3 4

0 E

1

2

3 G

Current node: (3, 4)

This is the goal so we have found a solution

The worklist as a queue:

If we trace back through our steps, we see that
(3, 4) was added by (2, 4)
(2, 4) was added by (1, 4)
(1, 4) was added by (1, 3)
(1, 3) was added by (1, 2)
(1, 2) was added by (0, 2)
(0, 2) was the entrance

0 1 2 3 4

0 E

1

2

3 G

0 1 2 3 4

0 E

1

2

3 G

Do it again, with a stack for the worklist. We start

Current node: (0, 2)
Worklist: empty
Unmarked neighbors of the current node:

(1, 2)
Worklist after unmarked neighbors are added:

(1, 2)

0 1 2 3 4

0 E

1

2

3 G

Stack for the worklist (growing to the right).

Current node: (1, 2)
Worklist: empty
Unmarked neighbors of the current node:

(1, 3), (2, 2), (1, 1)
Worklist after unmarked neighbors are added:

(1, 3), (2, 2), (1, 1)

0 1 2 3 4

0 E

1

2

3 G

Stack for the worklist (growing to the right).

Current node: (1, 1)
Worklist: (1, 3), (2, 2)
Unmarked neighbors of the current node:

(2, 1), (1, 0)
Worklist after unmarked neighbors are added:

(1, 3), (2, 2), (2, 1), (1, 0)

0 1 2 3 4

0 E

1

2

3 G

Stack for the worklist (growing to the right).

Current node: (1, 0)
Worklist: (1, 3), (2, 2), (2, 1)
Unmarked neighbors of the current node:

(0, 0)
Worklist after unmarked neighbors are added:

(1, 3), (2, 2), (2, 1), (0, 0)

0 1 2 3 4

0 E

1

2

3 G

Stack for the worklist (growing to the right).

Current node: (0, 0)
Worklist: (1, 3), (2, 2), (2, 1)
Unmarked neighbors of the current node:

none
Worklist after unmarked neighbors are added:

(1, 3), (2, 2), (2, 1)

0 1 2 3 4

0 E

1

2

3 G

Stack for the worklist (growing to the right).

Current node: (2, 1)
Worklist: (1, 3), (2, 2)
Unmarked neighbors of the current node:

(3, 1)
Worklist after unmarked neighbors are added:

(1, 3), (2, 2), (3, 1)

0 1 2 3 4

0 E

1

2

3 G

Stack for the worklist (growing to the right).

Current node: (3, 1)
Worklist: (1, 3), (2, 2)
Unmarked neighbors of the current node:

(3, 2)
Worklist after unmarked neighbors are added:

(1, 3), (2, 2), (3, 2)

0 1 2 3 4

0 E

1

2

3 G

Stack for the worklist (growing to the right).

Current node: (3, 2)
Worklist: (1, 3), (2, 2)
Unmarked neighbors of the current node:

none
Worklist after unmarked neighbors are added:

(1, 3), (2, 2)

0 1 2 3 4

0 E

1

2

3 G

Stack for the worklist (growing to the right).

Current node: (2, 2)
Worklist: (1, 3)
Unmarked neighbors of the current node:

none
Worklist after unmarked neighbors are added:

(1, 3)

0 1 2 3 4

0 E

1

2

3 G

Stack for the worklist (growing to the right).

Current node: (1, 3)
Worklist: empty
Unmarked neighbors of the current node:

(1, 4)
Worklist after unmarked neighbors are added:

(1,4)

0 1 2 3 4

0 E

1

2

3 G

Stack for the worklist (growing to the right).

Current node: (1, 4)
Worklist: empty
Unmarked neighbors of the current node:

(0, 4), (2, 4)
Worklist after unmarked neighbors are added:

(0, 4), (2, 4)

0 1 2 3 4

0 E

1

2

3 G

Stack for the worklist (growing to the right).

Current node: (2, 4)
Worklist: (0, 4)
Unmarked neighbors of the current node:

(3, 4)
Worklist after unmarked neighbors are added:

(0, 4), (3, 4)

0 1 2 3 4

0 E

1

2

3 G

Stack for the worklist (growing to the right).

Current node: (3, 4)

Again, that is our goal.

Again, we find the actual path by tracing back from
the goal to the entrance:

(3, 4) was added by (2, 4)
(2, 4) was added by (1, 4)
(1, 4) was added by (1, 3)
(1, 3) was added by (1, 2)
(1, 2) was added by (0, 2) which is the entrance

0 1 2 3 4

0 E

1

2

3 G

Following the path edges we get the path from the
exit to the entrance:

(3, 4)-> (2, 4)-> (1, 4)-> (1, 3)-> (1, 2)-> (0, 2)
(0, 2)-> (1, 2)-> (1, 3)-> (1, 4)-> (2, 4)-> (3, 4)

Reversing this gives a path from the entrance to the
exit, which is the solution to the maze that we seek.

Note that a solution to the maze is a path -- a
sequence of squares from the entrance to the exit
where each square is a neighbor of the previous
one. Our algorithm will generate such a path if
there is one, regardless of whether we use a stack
or a queue for the worklist. Changing the data
structure changes the order in which we add
nodes to the worklist, but either structure will
eventually get us a path if there is one.

